Some recent applications of radio occultationtechnique in atmospheric proceses

Main Article Content

Alejandro de la Torre
Pedro Alexander
Pablo Llamedo
Rodrigo Hierro
Horacio Pessano
Andres Odiard

Abstract

In the last years, the use of radio occultation (RO) technique to observe the terrestrial atmosphere and the climate takes advantage of the occultation of the Sun, the Moon, the stars and principally of artificial satellites of low height (LEO). In the latter case, crossed signs between LEO and GPS satellites are used. The application
of RO's technology using transmitters of the GPS system in high orbits and recipients on board of low orbit satellites, has provided profiles of atmospheric refractivity very precise. The basic idea of a RO is to observe how waves emitted by a GPS are propagated in the atmosphere. The ray trajectory associated to a radio wave between a GPS and a LEO, while these are hiding themselves mutually due to
the interposition of the Earth, is deviated due to refractivity radients. The ray bending angle is obtained from a change in the phase (Doppler shift) of the signal received by the LEO. Assuming spherical symmetry, the deviation information may be inverted by an Abel transformation to obtain a vertical profile of the index of refraction.

From atmospheric profiles of refractivity and an atmospheric model, several parameters are obtained: from temperature (T), pressure, geopotential height and water vapor to minor species as aerosols, cloud liquid water and ionospheric electron density. The enormous advantage offered by the coverage in the whole planet, above the continental and oceanic territories, the 1K T resolution, the long term stability and mainly the absence of any restriction imposed by climatic conditions, makes the GPS RO technique unique among different remote sensing atmospheric systems. Up to now, hundreds of thousands of soundings have been processed, from the first satellites to recent (SAC-C, CHAMP, GRACE, COSMIC, TerraSAR-X, MetOp). In the present work, examples of global and regional water vapor and atmospheric wave energy distributions will be shown. It will be put on special emphasis on the mountainous regions of the Andes Range at middle latitudes and the Antarctic Peninsula and case studies will be analyzed. This analysis will be complemented by WRF model simulations and with measured T profiles in the regions of interest. In particular it will be shown: i) the spatial distribution of stationary gravity waves, ii) their propagation in the lower and middle atmospheres, and iii) the possible relevance of mountain waves as a triggering mechanism of seep convection processes with hail production. Key words: satellite radio occultation, gravity waves.

Downloads

Download data is not yet available.

Article Details

How to Cite
de la Torre, A., Alexander, P., Llamedo, P., Hierro, R., Pessano, H., & Odiard, A. (2014). Some recent applications of radio occultationtechnique in atmospheric proceses. Boletín Geográfico, (35), 29–45. Retrieved from http://170.210.83.53/index.php/geografia/article/view/60
Section
Land, Geomorphology and Natural Resources
Author Biography

Pablo Llamedo, CONICET-Facultad de Ingeniería. Universidad Austral.

CONICET-Facultad de Ingeniería. Universidad Austral.

References

ANTHES, R. A.; ECTOR, D.; HUNT, D. C.; KUO, Y-H.; ROCKEN, C.; SCHREINER, W. S.; SOKOLOVSKIY, S. V.; SYNDERGAARD, S.; WEE, T-K.; y ZENG, Z. (2008). “The COSMIC/FORMOSAT-3 Mission: Early Results”. Bull. Amer. Meteor. Soc., 89, 313-333.

DE LA TORRE, A.; ALEXANDER, P.; HIERRO, R.; LLAMEDO, P.; ROLLA, A.; SCHMIDT, T.; Y WICKERT, J. (2012). Large Amplitude Gravity Waves above the Southern Andes, the Drake Passage and the Antarctic Peninsula. J. Geophys. Res. Atmos, 117, D2, doi:10.1029/2011JD016377.

DE LA TORRE, A.; VINCENT, D.; TAILLEAUX; R. Y TEITELBAUM, H. (2004). A deep convection event above the Tunuyan Valley near to the Andes Mountains. Mon. Weather Rev. 132, 9, 2259-2268.

DE LA TORRE, A.; HIERRO, R.; LAMEDO, P; ROLLA, A.; ALEXANDER, P. (2011). Severe Hailstorms near Southern Andes in the Presence of Mountain Waves, Atmos. Res., 101, 112–123, 2011.

DE LA TORRE, A., SCHMIDT, T., WICKERT, J. (2006). A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP, Geophys. Res. Lett., 33, L24809, doi:10.1029/2006GL027696.

ECKERMANN, S.D., PREUSSE, P. (1999). Global measurements of stratospheric mountain waves from space. Science 286, 1534-1537.

EOM, J., 1975. Analysis of the internal gravity wave occurrence of April 19, 1970 in the Midwest. Mon. Weather Rev. 103, 217-226.

FRITTS, D.C., ALEXANDER, M.J. (2003). Gravity wave dynamics and effects in the middle atmosphere, Rev Geophys., 411, 1003, doi:10.1029/2001RG000106.

GARCÍA-ORTEGA, E., LÓPEZ, L., SÁNCHEZ, J.L. (2009). Diagnosis and sensitivity study of two severe storm events in the Southeastern Andes. Atmos. Res. 93, 161 178.

HARDY, K. R., HAJJ, G.A., KURSINSKI, E.R. (1992). Atmospheric profiles from active space-based radio measurements. Preprints, 6th Conference on Satellite Meteorology and oceanography, Atlanta, GA, Amer. Soc.

HIERRO R., LLAMEDO, P., DE LA TORRE, A., ALEXANDER, P, ROLLA, A. (2012). Climatological patterns over South America derived from COSMIC radio occultation data. J. Geophys. Res. – Atmos, 117, D3, doi:10.1029 /2011JD016413.

HO S.-P., ZHOU, X., KUO, Y.-H., HUNT, D., WANG, J.-H (2010). Global Evaluation of Radiosonde Water Vapor Systematic Biases using GPS Radio Occultation from COSMIC and ECMWF Análisis. Remote Sens., 2, 1320 1330; doi:10.3390/rs2051320.

HOOKE, W.H. (1986). Gravity waves. Mesoscale Meteorology and Forecasting. In: Ray, P. (Ed.), Amer. Meteor. Soc. , pp. 272-288.

JOHNS, R.H. y DOSWELL III, C.A. (1992). Severe local storms forecasting. Weather Forecasting 7, 588-612.

KISHORE, P., VENKAT RATNAM, M., NAMBOOTHIRI, S.P., VELICOGNA, I. GHOUSE BASHA, JIANG,. J.H., IGARASHI, K, RAO, S.V.B,. SIVAKUMAR, V.. (2011) 50_S-50_N distribution of water vapor observed by COSMIC GPS RO: Comparison with GPS radiosonde, NCEP, ERA-Interim, and JRA-25 reanalysis data

sets. J Atmos Sol Terr Phys in press, doi:10.1016/j.jastp.2011.04.017.

PLOUGONVEN, R., HERTZOG, A., TEITELBAUM, H. (2008). Observations and simulations of a large-amplitude mountain wave breaking over the Antarctic Peninsula, J. Geophys. Res. , 113 , D16113, doi:10.1029/2007JD009739.

SELUCHI, M., SAULO, A.C., NICOLINI, M., SATYAMURTY, P. (2003). The Northwestern Argentinean Low: A Study of TwoTypical Events. Mon. Wea. Rev., 131, 2361-2378

SHUTTS, G.J., and VOSPER, S.B. (2011). Stratospheric gravity waves revealed in NWP model forecasts, Q. J. Roy. Met. Soc., 137 655, pp. 303-317.

SIMONELLI S., NORTE, F., HEREDIA, N., SELUCHI, M. (2006). The storm of January 1, 2000, north of the city of Mendoza. Atmósfera 20, 11-23.

SKAMAROCK, W.C,. KLEMP, J.B., DUDHIA, J., GILL, D.O.. BARKER, D.M., DUDA, M.G, HUANG, X, WANG, W., POWERS, J. (2008). A Description of the Advaced Research WRF Version 3, NCAR Technical Note NCAR/TN-475+STR. SMITH, E. K., WEINTRAUB, S. (1953). The constrain in the equation for atmospherics refractive index at radio frequencies. Proc. Of the I.R.E.,41, 1404-1410.

SMITH, R.B. (1979). The inuence of mountains on the atmosphere. Adv. Geophys. 21, 87-230.

SOKOLOVSKIY, S. V. ROCKEN C., LENSCHOW, D. H. KUO, Y.-H., ANTHES, R. A. SCHREINER, W. S., HUNT, D. C. (2007). Observing the moist troposphere with radio occultation signals from COSMIC. Geophys. Res. Lett., 34, L18802, doi:10.1029/2007GL030458.

STEINER, A. K., KIRCHENGAST, G. (2000). Gravity wave spectra from GPS/MET occultation observations. J. Atmos. Oceanic Tech., 17, 495-503.

THAYER, G. D. (1974). An improved equation for the radio refractive index of air. Radio Sci., 9, 803-807.

UCCELLINI, L.W. (1975). A case study of apparent graviy wave initiation of severe convective storms. Mon. Weather Rev. 103, 497-513.

VELASCO, I. Y FRITSCH, J.M. (1987). Mesoscale Convective Complexes in the Americas. J. Geophys. Res., 92, 9591 - 9613.

Similar Articles

You may also start an advanced similarity search for this article.