Próximo(s)

Vehículos aéreos no tripulados en la gestión de emergencia por desastre

Autores/as

Palabras clave:

dron, respuesta a desastres, gestión de riesgos, geografía ambiental, catástrofes naturales

Resumen

El crecimiento acelerado de los vehículos aéreos no tripulados, también conocidos como drones, y su aplicación en varios campos de actuación ofrece una oportunidad para su uso en la gestión de emergencia debido a un desastre. Las diversas tecnologías que pueden incorporar los vehículos aéreos no tripulados dotan a los mismos de aplicaciones que pueden ser de gran utilidad en una gestión de desastre, por ejemplo, podrían analizar en detalle (vía mapeo) la región afectada, ayudarían a construir una red de comunicación entre los sobrevivientes de la catástrofe y los equipos de rescate y las redes móviles más cercanas, y podrían recoger todo tipo de información y datos que se transmitiría de forma inmediata al centro de gestión de la emergencia para la toma de decisiones. Entonces, el presente trabajo de revisión analiza las potenciales funcionalidades y prestaciones de los vehículos aéreos no tripulados, como soporte tecnológico en la gestión de emergencias, considerando tanto la tipología de desastre como su actuación en las diferentes fases de desarrollo del desastre y su gestión.

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdujabarov, N., Shokirov, R., Takhirov, J., Saytov, K. & Bobomurodov, S. (2020). Prospects of the development of unmanned aerial vehicles (UAVs). Aerospace Engineering. https://onx.la/7efec

Abolt, C., Caldwell, T., Wolaver, B. & Pai, H. (2018). Unmanned aerial vehicle based monitoring of groundwater inputs to surface waters using an economical thermal infrared camera. Optical Engineering, 57(5), 053113. DOI: https://doi.org/10.1117/1.OE.57.5.053113

Ali, K., Nguyen, H., Vien, Q., Shah, P. & Raza, M. (2020). Deployment of drone-based small cells for public safety communication system. IEEE Systems Journal. DOI: 10.1109/JSYST.2019.2959668

Alhelaly, S., Muthanna, A. & Elgendy, I. (2022). Optimizing Task Offloading Energy in Multi-User Multi-UAV-Enabled Mobile Edge-Cloud Computing Systems. Applied Sciences, 12, 6566. DOI: 10.3390/app12136566

Asadzadeh, S., Oliveira, W. & Filho, C. (2022). UAV-based remote sensing for the petroleum industry and environmental monitoring: State-of-the-art and perspectives. Journal of Petroleum Science and Engineering, 208, 109633. DOI: https://doi.org/10.1016/j.petrol.2021.109633

Asnafi, M. & Dastgheibifard, S. (2018). A review on potential applications of unmanned aerial vehicle for construction industry. Sustainable Structure and Materials, 1(2), 44-53. DOI: https://doi.org/10.26392/SSM.2018.01.02.044

Avanzato, R. & Beritelli, F. (2020). A Smart UAV-Femtocell Data Sensing System for Post-Earthquake Localization of People. IEEE Access, 8, 30262-30270. DOI: 10.1109/ACCESS.2020.2972699

Azari, M., Rosas, F. & Pollin, S. (2019). Cellular connectivity for UAVs: Network modeling, performance analysis, and design guidelines. IEEE Transactions on Wireless Communications, 18(7), 3366–3381. DOI: 10.1109/TWC.2019.2910112

Barn, B., Barat, S. & Clark, T. (2017). Conducting Systematic Literature Reviews and Systematic Mapping Studies. Proceedings of the 10th Innovations in Software Engineering Conference. DOI: 10.1145/3021460.3021489

Bendig, J., Yu, K., Aasen, H. & Bolten, A. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39, 79-87. DOI: https://doi.org/10.1016/j.jag.2015.02.012

Cao, X., Yang, P., Alzenad, M., Xi, X., Wu, D. & Yanikomeroglu, H. (2018). Airborne communication networks: A survey. IEEE Journal on Selected Areas in Communications, 36(9), 1907–1926. DOI: 10.1109/JSAC.2018.2864423

Chaudhary, T. & Piracha, A. (2021). Natural Disasters-Origins, Impacts, Management. Encyclopedia, 1(4), 1101-1131. DOI: 10.3390/encyclopedia1040084

Chen, J., Liu, H., Zheng, J., Lv, M., Yan, B., Hu, X. & Gao, Y. (2016). Damage degree evaluation of earthquake area using UAV aerial image. International Journal of Aerospace Engineering, 2052603. DOI: 10.1155/2016/2052603

Chen, J., Mitra, U. & Gesbert, D. (2019). Optimal UAV relay placement for single user capacity maximization over terrain with obstacles. 20th International Workshop on Signal Processing Advances in Wireless Communications. DOI: 10.1109/SPAWC.2019.8815496

Chen, Y., Li, C., Chang, C. & Zheng, M. (2021). Identifying the influence of natural disasters on technological innovation. Economic Analysis and Policy, 70, 22-36. DOI: 10.1016/j.eap.2021.01.016

Chiaraviglio, L., Liu, W., Gutierrez, J. & Blefari-Melazzi, N. (2017). Optimal pricing strategy for 5G in rural areas with unmanned aerial vehicles and large cells. 27th International Telecommunication Networks and Applications Conference. DOI: 10.1109/ATNAC.2017.8215406

CFD Flow Engineering (2024). Classification and Application of Drones. https://acortar.link/yf7kUX

CRED-UNDRR (2020). The human cost of disasters: an overview of the last 20 years (2000-2019). Disaster Epidemiology Research Center / United Nations Office for Disaster Risk Reduction. https://onx.la/23e19

Ejaz, W., Azam, M., Saadat, S., Iqbal, F. & Hanan, A. (2019). Unmanned Aerial Vehicles enabled IoT Platform for Disaster Management. Energies, 12, 2706. DOI: 10.3390/en12142706

Erdelj, M. & Natalizio, E. (2016). UAV-assisted disaster management: Applications and open issues. 2016 International Conference on Computing, Networking and Communications. DOI: 10.1109/ICCNC.2016.7440563

Erdelj, M., Natalizio, E., Chowdhury, K. & Akyildiz, I. (2017). Help from the Sky: Leveraging UAVs for Disaster Management. IEEE Pervasive Computing, 16(1), 24-32. DOI: 10.1109/MPRV.2017.11

Esteve, J. & Benlloch, C. (2017). Rights and Science in the Drone Era Actual Challenges in the Civil Use of Drone Technology. Rights and Science. https://onx.la/4cf50

Fang, Z. & Savkin, A. (2024). Strategies for Optimized UAV Surveillance in Various Tasks and Scenarios: A Review. Drones, 8, 193. DOI: https://doi.org/10.3390/drones8050193

Flytbase (2024). Drone for Disaster Management-How Drones are Used for Emergency Response. https://acortar.link/Bw2gvm

Fotouhi, A., Qiang, H., Ding, M., Hassan, M., Giordano, L., Garcia-Rodriguez, A. & Yuan, J. (2019). Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges. IEEE Communications Surveys Tutorials, 21(4), 3417–3442. DOI: 10.1109/COMST.2019.2906228

Furutani, T. & Minami, M. (2021). Drones for Disaster Risk Reduction and Crisis Response. In: Sakurai, M., Shaw, R. (Eds.) Emerging Technologies for Disaster Resilience. Disaster Risk Reduction. Singapore: Springer. DOI: 10.1007/978-981-16-0360-0_4

González, F. & London, S. (2021). Desastres naturales y su impacto. Una revisión metodológica. (2021). Visión de Futuro, 25(1), 43-52. DOI: DOI: 10.36995/j.visiondefuturo.2021.25.01.002.es

Haakonsen, S., Ronnquist, A. & Labonnote, N. (2023). Fifty years of shape grammars: A systematic mapping of its application in engineering and architecture. International Journal of Architectural Computing, 21(1), 5-22. DOI: 10.1177/14780771221089882

Ivushkin, K., Bartholomeus, H., Bregt, A. & Pulatov, A. (2019). UAV based soil salinity assessment of cropland. Geoderma, 338, 502-512. DOI: https://doi.org/10.1016/j.geoderma.2018.09.046

James, K., Randall, N. & Haddaway, N. (2016). A methodology for systematic mapping in environmental sciences. Environmental Evidence, 5, 7. DOI: 10.1186/s13750-016-0059-6

JOUAV (2024). Emergency Response. https://www.jouav.com/industry/emergency-response

Khan, A., Gupta, S. & Gupta, K. (2020). Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques. International Journal of Disaster Risk Reduction, 47, 101642. DOI: 10.1016/j.ijdrr.2020.101642

Khan, A., Gupta, S. & Gupta, K. (2021). Unmanned aerial vehicle‐enabled layered architecture based solution for disaster management. Transactions on Emerging Telecommunications Technologies, 32(12), e4370, 1-29. DOI: 10.1002/ett.4370

Kucharczyk, M. & Hugenholtz, C. (2021). Remote sensing of natural hazard-related disasters with small drones: Global trends, biases, and research opportunities. Remote Sensing of Environment, 264, 112577. DOI: https://doi.org/10.1016/j.rse.2021.112577

Lee, S. & Choi, Y. (2016). Reviews of unmanned aerial vehicle (drone) technology trends and its applications in the mining industry. Geosystem Engineering, 19(4), 197–204. DOI: https://doi.org/10.1080/12269328.2016.1162115

Li, X. (2018). Deployment of drone base stations for cellular communication without apriori user distribution information. 37th IEEE Chinese Control Conference. DOI: 10.23919/ChiCC.2018.8482797

Liu, B., Zhang, W., Chen, W., Huang, H. & Guo, S. (2020). Online Computation Offloading and Traffic Routing for UAV Swarms in Edge-Cloud Computing. IEEE Transactions on Vehicular Technology, 69(8), 8777-8791. DOI: 10.1109/TVT.2020.2994541

Masum, M., Arrofi, M., Jati, G. & Arifin, F. (2013). Simulation of intelligent unmanned aerial vehicle (UAV) for military surveillance. 2013 International Conference on Advanced Computer Science and Information Systems. DOI: 10.1109/ICACSIS.2013.6761569

Mishra, B., Garg, D., Narang, P. & Mishra, V. (2020). Drone-surveillance for search and rescue in natural disaster. Computer Communications, 156. DOI: 10.1016/j.comcom.2020.03.012

Mishra, D. & Natalizio, E. (2020). A survey on cellular-connected UAVs: Design challenges, enabling 5G/B5G innovations, and experimental advancements. Computer Networks, 182(9), 107451. DOI: 10.1016/j.comnet.2020.107451

Mogili, U. & Deepak, B. (2018). Review on application of drone systems in precision agriculture. Procedia Computer Science, 133, 502-509. DOI: https://doi.org/10.1016/j.procs.2018.07.063

Mohsan, S., Khan, M., Noor, F., Ullah, I. & Alsharif, M. (2022). Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones, 6(6), 147. DOI: 10.3390/drones6060147

Mozaffari, M., Saad, W., Bennis, M., Nam, Y. & Debbah, M. (2019). A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. IEEE Communications Surveys & Tutorials, 21(3), 2334-2360. DOI: 10.1109/COMST.2019.2902862

Murray, C. & Chu, A. (2015). The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery. Transportation Research Part C, 84, 86-109. DOI: https://doi.org/10.1016/j.trc.2015.03.005

Nikhil, N., Shreyas, S., Vyshnavi, G. & Yadav, S. (2020). Unmanned Aerial Vehicles (UAV) in Disaster Management Applications. Third International Conference on Smart Systems and Inventive Technology. DOI: 10.1109/ICSSIT48917.2020.9214241

Park, J., Das, A. & Park, J. (2015). Application trend of unmanned aerial vehicle (UAV) image in agricultural sector: Review and proposal. Korean Journal of Agricultural Science, 42(3), 269-276. DOI: https://doi.org/10.7744/cnujas.2015.42.3.269

Rathore, N. (2015). Unlocking the potentiality of UAVs in mining industry and its implications. International Journal of Innovative Research in Science, Engineering and Technology, 4(3), 852-855. DOI: 10.15680/IJIRSET.2015.0403007

Sabzehali, J., Shah, V., Fan, Q., Choudhury, B., Liu, L. & Reed, J. (2022). Optimizing Number, Placement, and Backhaul Connectivity of Multi-UAV Networks. IEEE Internet of Things Journal, 9(21), 21548-21560. DOI: 10.1109/JIOT.2022.3184323

Saif, A., Dimyati, K., Noordin, K., Shah, N., Abdullah, Q. & Mukhlif, F. (2020). Unmanned Aerial Vehicles for Post-Disaster Communication Networks. 10th International Conference on System Engineering and Technology. DOI: 10.1109/ICSET51301.2020.9265369

Salama, M., Bahsoon, R. & Bencomo, N. (2017). Managing Trade-offs in Self-Adaptive Software Architectures: A Systematic Mapping Study. En Mistrik et al. (Eds.), Managing Trade-offs in Adaptable Software Architectures (249-297). Amsterdam: Elsevier. DOI: 10.1016/B978-0-12-802855-1.00011-3

Sakurai, M. & Murayama, Y. (2019). Information technologies and disaster management – Benefits and issues. Progress in Disaster Science, 2, 100012. DOI: 10.1016/j.pdisas.2019.100012

Sargiacomo, M., Servalli, S., Potito, S., D’Andreamatteo, A. & Gitto, A. (2021). Accounting for natural disasters from a historical perspective: A literature review and research agenda. Accounting History, 26(2), 179-204. DOI: 10.1177/10323732211003173

Shamsoshoara, A., Afghah, F., Blasch, E., Ashdown, J. & Bennis, M. (2021). UAV-Assisted Communication in Remote Disaster Areas using Imitation Learning. IEEE Open Journal of the Communications Society, 2, 738-753. DOI: 10.1109/OJCOMS.2021.3067001

Sziroczak, D., Rohacs, D. & Rohacs, J. (2022). Review of using small UAV based meteorological measurements for road weather management. Progress in Aerospace Sciences, 134, 100859. DOI: 10.1016/j.paerosci.2022.100859

Taipalus, T. (2023). Systematic Mapping Study in Information Systems Research. Journal of the Midwest Association for Information Systems, 1, 2. DOI: 10.17705/3jmwa.000079

Tan, L., Guo, J., Mohanarajah, S. & Zhou, K. (2021). Can we detect trends in natural disaster management with artificial intelligence? A review of modeling practices. Natural Hazards, 107, 2389–2417. DOI: 10.1007/s11069-020-04429-3

Tatum, M. & Liu, J. (2017). Unmanned aircraft system applications in construction. Procedia Engineering, 196, 167-175. DOI: https://doi.org/10.1016/j.proeng.2017.07.187

Teh, D. & Khan, T. (2021). Types, Definition and Classification of Natural Disasters and Threat Level. In: Eslamian, S., Eslamian, F. (Eds.), Handbook of Disaster Risk Reduction for Resilience. Cham: Springer. DOI: 10.1007/978-3-030-61278-8_2

Telli, K., Kraa, O., Himeur, Y., Ouamane, A., Boumehraz, M., Atalla, S. & Mansoor, W. (2023). A Comprehensive Review of Recent Research Trends on Unmanned Aerial Vehicles (UAVs). Systems, 11, 400. DOI: 10.3390/systems11080400

Thavasi, P. & Suriyakala, C. (2012). Sensors and tracking methods used in wireless sensor network based unmanned search and rescue system - A review. Procedia Engineering, 38, 1935-1945. DOI: 10.1016/j.proeng.2012.06.236

Vakis, R. (2006). Complementing Natural Disasters Management: The Role of Social Protection. SP Discussion Paper, 0543. Social Protection. https://onx.la/27974

van Tilburg, C. (2017). First Report of Using Portable Unmanned Aircraft Systems (Drones) for Search and Rescue. Wilderness and Environmental Medicine, 28(2), 116–118. DOI: 10.1016/j.wem.2016.12.010

Villa, T. (2016). Development and validation of a UAV based system for air pollution measurements. Sensors, 16(2), 2202. DOI: https://doi.org/10.3390/s16122202

Wanasinghe, T. (2020). Unmanned Aerial Systems for the Oil and Gas Industry: Overview, Applications, and Challenges. IEEE Access. DOI: 10.1109/ACCESS.2020.3020593

Wu, Q., Zeng, Y. & Zhang, R. (2018). Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Transactions on Wireless Communications, 17(3), 2109-2121. DOI: 10.1109/TWC.2017.2789293

Wu, Y., Fan, W., Yang, W., Sun, X. & Guan, X. (2019). Robust trajectory and communication design for multi-UAV enabled wireless networks in the presence of jammers. IEEE Access, 8, 2893-2905. DOI: 10.1109/ACCESS.2019.2962534

Xiong, Z., Zhang, Y., Lim, W., Kang, J., Niyato, D., Leun, C. & Miao, C. (2021). UAV-Assisted Wireless Energy and Data Transfer with Deep Reinforcement Learning. IEEE Transactions on Cognitive Communications and Networking, 7(1), 85-99. DOI: 10.1109/TCCN.2020.3027696

Yakushiji, K., Fujita, H., Murata, M., Hiroi, N., Hamabe, Y. & Yakushiji, F. (2020). Short-Range Transportation Using Unmanned Aerial Vehicles (UAVs) during Disasters in Japan. Drones, 4, 68. DOI: 10.3390/drones4040068

Yamazaki, F., Kubo, K., Tanabe, R. & Liu, W. (2017). Damage assessment and 3d modeling by UAV flights after the 2016 Kumamoto, Japan earthquake. IEEE International Geoscience and Remote Sensing Symposium. DOI: 10.1109/IGARSS.2017.8127673

Zeng, Y., Zhang, R. & Lim, T. (2016). Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Communications Magazine, 54(5), 36–42. DOI: 10.1109/MCOM.2016.7470933

Zhang, Y. (2024). Perceptive Mobile Networks for Unmanned Aerial Vehicle Surveillance: From the Perspective of Cooperative Sensing. IEEE Vehicular Technology Magazine, 19(2), 60-69. DOI: 10.1109/MVT.2024.3373931

Zhao, N., Lu, W., Sheng, M., Chen, Y., Tang, J., Yu, F. & Wong, K. (2019). UAV-assisted emergency networks in disasters. IEEE Wireless Communications, 26(1), 45-51. DOI: 10.1109/ MWC.2018.1800160

Zwegliński, T. (2020). The use of drones in disaster aerial needs reconnaissance and damage assessment - three-dimensional modeling and orthophoto map study. Sustain, 12, 1–20. DOI: 10.3390/su12156080

Publicado

2024-12-26

Cómo citar

Díaz Olariaga, O. (2024). Vehículos aéreos no tripulados en la gestión de emergencia por desastre. Boletin Geografico, 46(46). Recuperado a partir de http://170.210.83.53/index.php/geografia/article/view/5262

Número

Sección

Artículos

ARK

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.